Lesson (1)

The cellular organization
of the nervous system
(neuroglia)

The neuroglia: structure and functions

There is a debate on their actual number (formerly 10 times):
now 2-3 times the number of the neurons

5 main types:
- Astrocytes
- Ependimal cells
- Oligodendrocytes
- Schwann cells
- Microglia

Functions:
- Filter (Blood-Brain Barrier)
- Physical support
- Protection (sequestration of ion or neurotransmitters in excess; resident immune system)
- Trophic and metabolic support
- Signal transduction (transcytosis, myelin formation)
- Regeneration and degeneration/scar formation (neural stem cells)
What are glia?

Neuroglia="nerve glue" (Virchow, 1859)

Glia as cells: S. Ramon y Cajal, P. del Rio-Hortega, 1900-1920

TABLE 2.2. Types of Vertebrate Glial Cells

<table>
<thead>
<tr>
<th>Type</th>
<th>Appearance</th>
<th>Features and Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astroglia</td>
<td>Star-shaped, symmetrically nutritive and support function</td>
<td></td>
</tr>
<tr>
<td>Microglia</td>
<td>Small, macrophage derived, defensive function</td>
<td></td>
</tr>
<tr>
<td>Oligodendroglia</td>
<td>Asymmetrical: form myelin around axons in brain and spinal cord</td>
<td></td>
</tr>
<tr>
<td>Schwann cell</td>
<td>Asymmetrical: wraps around peripheral nerves to form myelin</td>
<td></td>
</tr>
</tbody>
</table>

A spatial view of neuroglial Cells of CNS
THE NEUROGLIA:

some FUNCTIONS

• Astrocytes & Ependimal cells: Blood brain barrier, support, trophic, signalling, support, homeostasis
• Oligodendrocytes \(\text{Support & myelin, signalling} \)
• Schwann Cells
• Microglia: resident immune system
Astrocyte/capillary interactions: foot process

Two types of astrocytes

- Protoplasmic (pedunculated) in the grey matter
- Fibrous in the white matter

Pedunculated astrocytes Fibrous astrocyte in the cerebellum white matter

Figure 9-11
Astrocytes (astroglia) “star-cells”

Most numerous cell type in brain
Constitute ~30-50% of brain volume

NORMAL FUNCTIONS
- **Developmental**: Migrational and Axon guidance of neurons
- **Trophic** support of neurons (growth factors)
- **Homeostasis** of neuronal microenvironment
- **Ionic**
- **Metabolic**
- Neurotransmitter uptake
- **Blood-Brain barrier**: induction and maintenance
- **Synaptogenesis** and synaptic remodeling

Astrocytes contact virtually every cell component in brain

- Other astrocytes (gap junctions)
- Ependymal cells
- Neurons (somas, processes, synapses)
- Oligodendroglia
- Capillary endothelial cells
Astrocytes

Trophic function:
produce growth factors/neurotrophic factors (NGF, BDNF, GDNF, CNTF, FGFs), especially in development and regenerative responses to injury

Buffer extracellular space to maintain homeostasis for neuronal function:
• K+ spatial buffering
• Protect neurons from excitotoxicity: active glutamate uptake/conversion to glutamine (cycled back to neurons)

Astrocytes communicate with each other, other glia, and neurons via intercellular calcium waves mediated by GAP-junctions and extracellular signals

Calcium Waves in Retinal Glial Cells
Eric A. Newman and Kathleen R. Zahs
Science 1997 February 7; 275: 844-847.
Glia work in unsuspected ways: synaptic depression after glia contacts synapses

How did they figure this out?
(or, what does it take to get a paper in Nature?)

• Observation:
 – Cultured neurons formed Ach synapses
 – When glia were allowed to contact synapses, synaptic depression was observed

• Question:
 – How do the glia sense and respond to the Ach to modulate transmission?

• Finding:
 – It senses Ach by AchBP (identified by Bungarotoxin purification scheme, partial AA sequence)

• Response:
 – Glia have nAChR, which senses increased Ach and induces release of AchBP from glia into the cleft, suppressing transmission (negative feedback).
Who are the stem cells of the adult brain?

astrocytes vs. ependymal cells

The subventricular zone

Ependymal cells

Dr Arturo Alvarez-Buylla and Dr Jonas Frisen report discovering site in brain of elusive neural stem cell, founding cell from which perhaps whole brain develops, but each scientist has a different site in mind; Frisen contends that neural stem cells are cells that line ventricles, while Buylla contends neural stem are the star-shaped cells called astrocytes that lie one layer in from ventricle lining; experts say their contradictory findings may yet be reconcilable.

Astrocytes control synapse formation

- **No GLIA**
 - Synaptotagmin
- **Plus GLIA**
 - PSD-95

Control of Synapse Number by Glia

Erik M. Ullian, Stephanie K. Sapperstein, Karen S. Christopherson, and Ben A. Barres
Astrocytes in disease: gliosis

Astrocytosis/gliosis

= response of astrocytes to many forms of injury: trauma, inflammation, MS, infection, neurodegeneration

MS plaque: GFAP

Astrocytes-gliosis

Classical description of gliosis is:
- hypertrophy,
- +/- proliferation,
- Prominent expression of intermediate filaments: “Glial filaments”:
 - Glial Fibrillary Acidic Protein (discovered as a major component of Multiple Sclerosis White Matter Plaques)
 - Also, vimentin, nestin

Reality: there must be many distinct forms of astrocyte activation; hundreds or thousands of distinct changes in gene expression
More reactive astrocytes (gliosis)

BBB=endothelial tight junctions
Ependymal cells

- Line ventricles of brain and spinal cord canal
- Ciliated, columnar epithelium, with cilia and adherens junctions; but express glial markers
- May extend cytoplasmic processes into brain parenchyma
- Recent controversy as to whether Ependymal cells (versus subependymal astrocytes) are adult neural stem cells
Ependymal cells

Chroiod plexus
Oligodendroglia (CNS)

• “few-branch” glia
• Discovered by del Rio-Hortega, using metallic impregnation techniques in 1921
• one oligo myelinates many CNS axons
• CNS myelinators (white matter)
• Target of autoimmune attack in MS
• Specific oligodendrocyte myelin proteins:
 – PLP
 – DM20
 – MBP
Ultrastructure of white matter

Oligodendroglia

1 glial cell forms myelin around many axons

Figure 9-13
Schwann Cell (PNS)

Schwann Cell

• Theodore Schwann (19th cent. German anatomist; a key founder of cell theory)

• Each Schwann cell wraps a portion of a single peripheral axon
Myelinated peripheral axons

- Myelin acts as an insulator for vertebrate nerve cells
- Cellular structure - myelin is composed of alternating layers of protein and lipid (20% protein and 80% lipid; looks white)
- Very little cytoplasm between layers
- Myelin represents a major vertebrate feature
 - Not a major factor in invertebrates nervous systems
 - Major advantages
 - Faster conduction (10x)
 - Smaller sized neurons (10x)
Myelin 2

- Oligodendrocytes in CNS and Schwann cells in PNS
- Oligodendrocytes in CNS myelinate several fibers
 - myelination spirals inward with new layers pushed under the older ones
- In CNS - no neurilemma or endoneurium
- In PNS, hundreds of layers wrap axon
 - the outermost coil is schwann cell (neurilemma)
 - covered by basal lamina and endoneurium
- Gaps between myelin segments = nodes of Ranvier
- Initial segment (area before 1st schwann cell) and axon hillock form trigger zone where signals begin

Myelin Sheath

- Note: Node of Ranvier between Schwann cells
Myelination in PNS

- Myelination begins during fetal development, but proceeds most rapidly in infancy.

Unmyelinated Axons of PNS

- Schwann cells hold small nerve fibers in grooves on their surface with only one membrane wrapping
Myelination in CNS

- Diameter of fiber and presence of myelin
 - large fibers have more surface area for signals
- Speeds
 - small, unmyelinated fibers = 0.5 - 2.0 m/sec
 - small, myelinated fibers = 3 - 15.0 m/sec
 - large, myelinated fibers = up to 120 m/sec
- Functions
 - slow signals supply the stomach and dilate pupil
 - fast signals supply skeletal muscles and transport sensory signals for vision and balance
Impulse Conduction - Unmyelinated Fibers

- Voltage-gated channels needed for APs
 - fewer than 25 per \(\mu \text{m}^2 \) in myelin-covered regions
 - up to 12,000 per \(\mu \text{m}^2 \) in nodes of Ranvier
- Fast \(\text{Na}^+ \) diffusion occurs between nodes

Saltatory Conduction - Myelinated Fibers

- Voltage-gated channels needed for APs
 - fewer than 25 per \(\mu \text{m}^2 \) in myelin-covered regions
 - up to 12,000 per \(\mu \text{m}^2 \) in nodes of Ranvier
- Fast \(\text{Na}^+ \) diffusion occurs between nodes
Peripheral Nerve (Fascicle)

- Perineurium
- Endoneurium
- Myelinated axons

Peripheral nerve

- Spinal cord
- Sensory ganglion
- Dorsal root
- Ventral root
- Cell body of motor neuron
- Interneuron
- Motor neuron
- Striated muscle
- Sensory neuron
- Schwann cell
- Myelin
Neuropathological note

- Tumors of the nervous system are largely Glial tumors:
 - Peripheral: Schwannoma, Neurofibroma
 - Central:
 - astrocytomas (includes benign pilocytic astrocytic and most common and most malignant: glioblastoma multiforme)
 - Oligodendroglomas
 - ependymomas

Multiple Sclerosis is an autoimmune attack on white matter
Major proteins found in Myelin

- **P0 (protein zero)** intraperiod line formation
 - a glycoprotein only in myelin-forming Schwann cells (50%)
 - similar to CAMs, but bifunctional (in PNS)
- **proteolipid protein (PLP)** intraperiod line formation
 - only in Oligodendrocytes (50%) (in CNS)
- **myelin basic protein (MBP)**
 - expressed in both, involved in compaction
 - very antigenic, can be used to induce experimental multiple sclerosis, (T-lymphocyte inv. of CNS and PNS
 - **shiverer** in mice
- **NCAM**
 - Cellular adhesion

How these proteins work together
Schwann Cells and Peripheral Neuropathies

- Schwann cells also perform trophic functions (NGF production in regeneration).
- Myelin proteins
 - Schwann cells (PNS): P0, PMP22
 - CMT1A = duplication of PMP22
 - HNPP = deletion of PMP22 (surprisingly, deletion causes milder phenotype than CMT1A (duplication))

Radial glia

- Embryonic scaffold throughout CNS
- Guides for radial migration of neurons
- Produce matrix and adhesion proteins
Radial glia

- Adult: radial glia persist in cerebellum (Bergmann glia) and in retina (Muller cells)

Gliogenesis

Note the absence of microglia from this family tree!
Microglia: OX-42
Microglia (as opposed to Macroglia=astrocytes, oligos)

- Most like tissue macrophages elsewhere in body; not of neuroectodermal origin, like all macroglia
- Chief mediators of immune responses in brain
- CNS is not completely isolated from immune reactions
- Microglia derive from marrow monocyte lineage
- Have phenotypic markers similar to tissue macrophages:
 - CD68, HAM-56, IL-1alpha,beta, class II MHC, OX-42

Microglia

- Most roles for microglia in context of CNS pathology; little known yet about normal functions. Examples of possible normal function are developmental: phagocytosis of apoptotic neurons; secretion of factors
- Activated microglia can produce and secrete cytokines capable of activating astrocytes: e.g. IL-1; some think microglia are the primary sensors of CNS damage.
- Some say that they have no function in the healthy adult brain: They don’t form a network with intercellular junctions, as do neurons and astrocytes

LIKE BODYGUARDS: THEY JUST SIT THERE WAITING FOR AN INSULT
Microgliogenesis

How do we know this is true?

Microglial activation
Microglia

Blood-brain Barrier

[Diagram showing microglia and blood-brain barrier]